Gauss's three squares theorem with almost prime variables

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Consecutive Almost Squares

Given a positive integer n, we let sfp(n) denote the squarefree part of n. We determine all positive integers n for which max{sfp(n), sfp(n+ 1), sfp(n+ 2)} ≤ 150 by relating the problem to finding integral points on elliptic curves. We also prove that there are infinitely many n for which max{sfp(n), sfp(n + 1), sfp(n + 2)} < n.

متن کامل

Sums of almost equal prime squares

In this short note, we prove that almost all integers N satisfying N ≡ 3 (mod 24) and 5 -N or N ≡ 4 (mod 24) is the sum of three or four almost equal prime squares, respectively: N = p21 + · · ·+ p 2 j with |pi − (N/j) 1/2| ≤ N1/2−9/80+ε for j = 3 or 4 and 1 ≤ i ≤ j.

متن کامل

Vinogradov’s Three Prime Theorem

I sketch Vinogradov’s 1937 proof that every sufficiently large odd integer is the sum of three prime numbers. The result is dependent on numerous intermediate results, some of which I prove and others of which have proofs too long to give here. The main technique is decomposition into major and minor arcs.

متن کامل

On generalisations of almost prime and weakly prime ideals

Let $R$ be a commutative ring with identity‎. ‎A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$‎, ‎$a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$‎, ‎for some $iin{1,ldots,n}$; ($m,ngeq 2$)‎. ‎In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...

متن کامل

Finding Almost Squares

We study short intervals which contain an " almost square " , an integer n that can be factored as n = ab with a, b close to √ n. This is related to the problem on distribution of n 2 α (mod 1) and the problem on gaps between sums of two squares.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2007

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa128-4-7